Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination.
نویسنده
چکیده
The V(D)J recombinase recognizes a pair of immunoglobulin or T-cell receptor gene segments flanked by recombination signal sequences and introduces double-strand breaks, generating two signal ends and two coding ends. Broken coding ends were initially identified as covalently closed hairpin DNA molecules. Before recombination, however, the hairpins must be opened and the ends must be modified by nuclease digestion and N-region addition. We have now analyzed nonhairpin coding ends associated with various immunoglobulin gene segments in cells undergoing V(D)J recombination. We found that these broken DNA ends have different nonrandom 5'-strand deletions which were characteristic for each locus examined. These deletions correlate well with the sequence characteristics of coding joints involving these gene segments. In addition, unlike broken signal ends, these nonhairpin coding-end V(D)J recombination reaction intermediates have 3' overhanging ends. We discuss the implications of these results for models of how sequence modifications occur during coding-joint formation.
منابع مشابه
The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملVariable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice.
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this ...
متن کاملAlternative pathways for the repair of RAG-induced DNA breaks.
RAG1 and RAG2 cleave DNA to generate blunt signal ends and hairpin coding ends at antigen receptor loci in lymphoid cells. During V(D)J recombination, repair of these RAG-generated double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway contributes substantially to the antigen receptor diversity necessary for immune system function, although recent evidence also supports the...
متن کاملNonhomologous end joining and V(D)J recombination require an additional factor.
DNA nonhomologous end-joining (NHEJ) is the major pathway for repairing DNA double-strand breaks in mammalian cells. It also functions to carry out rearrangements at the specialized breaks introduced during V(D)J recombination. Here, we describe a patient with T(-)B(-) severe combined immunodeficiency, whose cells have defects closely resembling those of NHEJ-defective rodent cells. Cells deriv...
متن کاملDouble-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated.
Immunoglobulin and T-cell receptor genes are assembled during lymphocyte development by a novel, highly regulated series of gene rearrangement reactions known as V(D)J recombination. All rearranging loci are flanked by conserved heptamer-nonamer recombination signal sequences. Gene rearrangement results in the imprecise fusion of coding sequences and the precise fusion of signal sequences. DNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 18 4 شماره
صفحات -
تاریخ انتشار 1998